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We present two fast and simple algorithms for approximating the distance function
for given isolated points on uniform grids. The algorithms are then generalized to
compute the distance to piecewise linear objects. By incorporating the geometry of
Huygens’ principle in the reverse order with the classical viscosity solution theory for
the eikonal equation |∇u| = 1, the algorithms become almost purely algebraic and
yield very accurate approximations. The generalized closest point formulation used
in the second algorithm provides a framework for further extension to compute the
distance accurately to smooth geometric objects on different grid geometries, without
the construction of the Voronoi diagrams. This method provides a fast and simple
translator of data commonly given in computational geometry to the volumetric
representation used in level set methods. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Given a compact set K in space, the distance function for K at a point x is defined to be
the smallest Euclidean distance of x to the points in K . Fast and accurate computation of the
distance function is an important step in many applications. For example, level set methods
[14] rely heavily on it to represent an interface, and in particular to keep the level set function
well behaved during time evolution. In the surface interpolation model of [28], a surface
interpolating a given points set K is constructed by first computing the distance function
to K . In the Island Dynamics model of [6] in materials science, one needs the distance
function to help understand the aggregation of atoms into islands. Generally, applications
in physics, chemistry, molecular biology, and even urban planning that use point pattern
analysis require construction of the distance function or (at least) Voronoi diagrams [5, 12].
Furthermore, in applications such as ray tracing and surface rendering where one needs
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information about the normals or other geometric quantities of the surfaces of the given
objects, the distance function is essential.

In computational geometry, the extraction of distance information is dealt with through
the construction of the Voronoi diagram. There is an abundance of literature about this topic.
For isolated points, those algorithms usually start out using geometric properties (usually
the Euclidean distance between points and some ad hoc observations) and intricate sorting
algorithms to construct a representation (e.g., the “winged-edge” data structures [12] of the
Voronoi diagram that is optimally linear in the number of data points [1, 24]. For configura-
tions of slightly more general geometric objects, such as isolated points and linear segments
(triangles in the planes), there are O(M log M) algorithms for its construction and point lo-
cation [27], where M is the number of segments. However, if we need to evaluate the distance
at all the grid points, we still have to go through the data structures on each grid point to com-
pute the information. The overall complexity is at leastO(N ) where N is the number of grid
points. We would like to emphasize that many applications can be solved more efficiently,
both in terms of development time and computation time if we accept the use of grids. One
reason is that these applications are formulated and solved on the grids and require only the
distance values on the grid nodes. In [22], the author proposed a fast tree-based method that
efficiently uses a fast construction of Voronoi diagrams for accurate distance computation.
Another efficient approach that uses Voronoi diagram for distance computation on the grids
is reported in [11], in which the author considered mainly a single triangulated object.

Thus, we want to provide a framework that can be generalized to compute the distances to
a variety of interfaces often encountered in the PDE-level set formulations of the problems.
From the perspective of the grid-based numerical methods for PDEs, our method can thus
be adopted almost effortlessly. Of course many PDE based applications are discretized on
grids, e.g., the surface interpolation of [28]. Even problems involving the solution of PDEs
on surfaces can use the level set formulation [3, 10]. In these cases, our algorithms provide
fast and simple procedures to accomplish the task of generating the distance function.
With our algorithms, the user only has to visit each grid point and perform some simple
calculations. The complexity is linear in the number of grid points in the grid that resolves
the interface. Only the data structures very similar or identical to the original ones used in the
original applications are required. One can also think of our approach as a fast volumetric
preprocessing of the distance.

We also note that once we have a second or higher order approximate distance func-
tion d(x̄), we can easily find the Voronoi generator x̄∗ of any given point x̄ by x̄∗ =
x̄ − d(x̄)∇d(x̄), which requires O(1) operations.

The rest of this paper is organized as follows: We begin by presenting the standard PDE
approximation methods for finding the distance function with an iterative scheme [23] and
the Dijkstra-like fast marching method [26]. Next, we give motivation for the new method
based on the geometric consideration of the reverse Huygens’s principle. We employ a
special sweeping strategy similar to the ones used in [4, 8, 25] to update each grid point.
We then reformulate the computation of the distance function by storing the closest points
on the interface on each grid point. Finally, we generalize the closest point algorithm to
compute the distance accurately to triangulated surfaces commonly used in computational
geometry. This provides a fast translator porting data used in computational geometry to
the embedded surface formulation used by the level set methods.

For simplicity, we will first discuss the problem and the setup in R
2. This can be directly

extended to R
3.
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2. THE PROBLEM

Let � be a compact connected subset of R
2 and � ⊂ � closed. The distance function

u(x̄) to � is defined by

u(x̄) = dist(x̄, �) := min
p∈�

|x̄ − p|

as a deterministic optimization problem. However, it can also be formulated as the viscosity
solution of the Eikonal equation

|∇u| − 1 = 0 with u(x̄) = 0 for x̄ ∈ �; (1)

i.e., u : � → R is continuous,

u(x̄) = lim
ε→0

uε(x̄),

where uε solves the parabolic equations

|∇uε | − ε�uε = 1 (ε > 0).

The existence and uniqueness of such viscosity solution u(x̄) is well known; see e.g., [2].
Additionally, from classical PDE theory, it follows that u is increasing along the character-
istics in regions where the characteristics do not cross. This is crucial to the approximation
procedures described later in this paper.

Before describing our algorithms, we present some notation which shall be used later.

DEFINITION 2.1. Given P ∈ � and � ⊂ � compact, we define

source(P) = {Q ∈ �: dist(P, �) = |P − Q|}.

Clearly, if P is in the interior of a Voronoi region, source (P) contains only a unique point,
and we shall call this point P∗. If P is on the Voronoi boundaries, we shall choose one
element in source (P), and also call this predetermined point P∗ for convenience. Since we
are concerned with the distance, any such P∗ works. We will also adopt the conventional
term used in computational geometry with P∗ being called a Voronoi generator [12].

We consider � ⊂ R
2 a rectangular region and �d its discretization with uniform grid

size h in both the x- and y-directions. ui, j refers to u(ih, jh).

DEFINITION 2.2 (Neighbors). Let E = (xi , y j ) ∈ �d . We say P is a neighbor of E if
P ∈ {(xi , y j±1), (xi±1, y j )}.

DEFINITION 2.3 (
√

2h Neighbors). We say Q is a
√

2h neighbor of E if Q ∈ {(xi±1,

y j±1)}.

3. APPROXIMATION OF THE DISCRETIZED

EQUATION—GODUNOV’S HAMILTONIAN

To put our proposed methods into context, we review briefly the distance computation
from the numerical PDE point of view. This provides the motivation and the foundation of
our algorithms.



178 YEN-HSI RICHARD TSAI

Let u(x) be the viscosity solution of (1). Rouy and Tourin [18] proved convergence to
the viscosity solution of an iterative method solving the steady state equation (1) with the
Godunov Hamiltonian approximating |∇u|

HG(p−, p+, q−, q+) =
√

max{p+
−, p−

+}2 + max{q+
− , q−

+}2, (2)

where p± = Dx
±ui, j, q± = Dy

±ui, j, Dx
±ui, j = ±(ui±1, j − ui, j )/h and accordingly for Dy

±ui, j .
Here ui, j is the approximation to the exact solution, and x+ = max(x, 0), x− = −min(x, 0).
The Godunov Hamiltonian yields a convergent method that is first-order accurate in grid
size.

Osher [13] proved that the t-level set of u(x) is the zero level set of the viscosity solution
of the evolution equation at time t

φt = |∇φ| (3)

with appropriate initial conditions. So one can try to solve the time-dependent equation by
the level set formulation [16] with a consistent, monotone Hamiltonian [17]. Crandall and
Lions proved that the discrete solution obtained this way converges to the desired viscosity
solution [7].

Tsitsiklis [26] combined the heap sorting procedure with a variant of Dijkstra’s algorithm
to solve the steady state equation of the more general problem

|∇φ| − R(x̄) = 0 for R(x̄) > 0. (4)

This was later rederived in [20] and in [9] and has become known as the fast marching
method. Its complexity is O(N log(N )), where N is the number of grid points.

Later, Osher and Helmsen gave a criterion on general Hamiltonians so that the fast
marching algorithm is applicable and extended the fast marching methods to these more
general problems [15, 25].

In [4], Boué and Dupuis suggest a “sweeping” approach to solve the steady state equation,
which, in our experience, results in an O(N ) algorithm for the simple problem at hand. We
point out here that this strategy when applied to compute the distance to a set of isolated
points is very similar to that described in an orginal and quite early paper of Danielsson [8].
However, the author in [8] considered only points lying on the grid and did not provide an
extension to the three-dimensional case. This iterative approach has been used successfully
in [25] in both 2D and 3D. We shall incorporate it into our algorithms. Using this “sweeping”
approach, the complexity of our algorithms drops to O(N ) from O(N log N ) in the fast
marching case, and the implementation of the algorithms becomes a bit easier than the fast
marching method that requires heap sort. (Sweeping is not recommended for general R(x̄)

in Eq. [4].)
Since the fast marching method is, by now, well known, we will not give much detail

on its implementation in this paper. In general, this involves a sorting procedure and the
solution of

HG(Dx
−ui, j , Dx

+ui, j , Dy
−ui, j , Dy

+ui, j ) = 1 (5)

for ui j in terms of its four neighboring values.
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FIG. 1. Godunov solver treats everything as a plane wave.

It is important to note that this method yields the exact distance of a point inside
the Voronoi regions induced by lines in 2D and planes in 3D. The normal n(x, y) =
∇u(x, y)/|∇u| of the distance to the lines is constant. So any consistent divided differ-
ence of u gives an exact evaluation of its derivatives.

However, this method is inconsistent for computing the distance to isolated points. For
instance, if ul,m = 0, then the computed ul+1,m = ul,m+1 = h, and ul+1,m+1 = (1 + 1/

√
2)h,

which is the distance between ul+1,m+1 to the line joining ul+1,m and ul,m+1 plus h. That is,
the Godunov solver treats the values ul+1,m and ul,m+1 as though they come from a plane
wave, resulting in an early arrival time (Fig. 1). The level sets of the solution look like
diamond shaped polyhedra, as seen in Fig. 2, instead of perfect circles/spheres. This leads
us to take more specific consideration of the geometry of the problem.

FIG. 2. The isosurface {u = 0.1} computed by the solution of the Godunov Hamiltonian.
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4. APPROXIMATION BY GEOMETRIC CONSIDERATIONS

Since in our algorithms the two-dimensional problem is only a special case of the three-
dimensional case, we will now discuss our algorithms in the three-dimensional setting. To
facilitate our discussion, we first introduce some more notation.

Notation 4.1. Let P ∈ � ⊂ R
2, and let u(P) be the value of the viscosity solution of

(1). We use the following notation for brevity,

CP := {x̄ ∈ � : |x̄ − P| = u(P)},

which is the circle with radius u(P) centered at P . In 3D, we will use SP to denote the
sphere centered at P with radius u(P).

Notation 4.2. Let E ∈ � be represented by (i, j, k) ∈ �d ∈ R
3. Depending on the sit-

uation, we will use u(E) and u(i, j, k) interchangeably to represent the value of u at E .

DEFINITION 4.1 (Sweeping Directions in 3D). We define the following iterations going
through the uniform grids (1 : N x − 1, 1 : N y − 1, 1 : N z − 1):

(x+, y+, z+) sweeping:
for k=1: Nz-1
for j=0: Ny-1
for i=0: Nx-1
update ui, j,k

(z+, y−, x+) sweeping:
for i=Nx-1: 1
for j=Ny-1: 1
for k=Nz-1: 1
update ui, j,k

Following the above examples, we can define the rest of the six iterations: (y+, x+, z−),
(y−, x−, z+), (x−, y+, z+), (z−, y−, x+), (x+, y−, z+), and (z−, y+, x−).

4.1. Motivation and Algorithm

We return briefly to two dimensions for simplicity for this part of the exposition. Let us
first consider a single Voronoi generator E∗ whose location is not explicitly known at the
start of the algorithm. Suppose rP and rQ are the distances of two distinct points P and Q
to �, respectively; i.e., u(P) = rP , u(Q) = rQ . Let E = (x, y) be a point of interest with

‖E − E∗‖ ≥ max{u(P), u(Q)} (6)

a priori. Consider CP and CQ as in the definition: CP is the circle of radius rP centered at
P and CQ of radius rQ centered at Q. The intersections of CP and CQ are the solutions of
a quadratic equation. Denote the two intersections by V and W . It is then easy to see that
either V or W is E∗. From the hypothesis that E is farther from E∗ than is P or Q, we
deduce that u(E) = max{‖E − W‖, ‖E − V ‖}.

Thus, by enforcing this sort of upwinding decision in selecting intersections to maintain
monotonicity of the solution “from” �, we are able to approximate the distance function.
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In fact, this is the key property for the success of the aforementioned fast marching and
sweeping methods.

Now we can generalize to a full 3D algorithm for distance approximation of a given set
of isolated points.

ALGORITHM 1 (Spherical Intersection Solver).

1. Initialize: give the exact distance to u at grid points that are
√

2-neighbors of � ⊂ �d .
Mark them so they will not be updated. Mark all other grid values as ∞.

2. Iterate through each grid point E with index (i, j, k) in each sweeping direction or
according to the fast marching heap sort;

• Select stencils: At each grid point (i, j, k), find its neighbors P1, P2, and P3 in x-,
y-, and z-direction, respectively, such that u(P1) ≤ u(i ± 1, j, k), u(P2) ≤ u(i, j ± 1, k),
and u(P3) ≤ u(i, j, k ± 1). Let NBD = {P1, P2, P3}.

—Discard from NBD the element(s) on which u is ∞.
—If NBD = ∅. Goto 3.
—Otherwise, let Q ∈ NBD such that u(Q) = min{u(P) : P ∈ NBD}. Discard from

NBD those Pl that are too large: u(Pl) − u(Q) > ‖Pl − Q‖.
• If all P1, P2, and P3 remain in NBD:

—If SP1 , SP2 , and SP3 intersect: Let V and W be the two points of their intersection,
and set u(E) = max{‖E − V ‖, ‖E − W‖}.

∗ If the monotone requirement u(E) ≥ u(Pi ), i = 1, 2, 3 is satisfied, skip to step 3.
∗ Otherwise the intersections contain false information. Treat as if SP1 , SP2 , and

SP3 do not intersect.
—If SP1 , SP2 , and SP3 do not intersect: Discard the element from NBD on which u

has the greatest value, i.e., discard from NBD the P with u(P) = maxpl ∈ NBD u(Pl). Go to
the next case.

• If there are only two P ′
l s remaining in NBD (assuming they are P2, P3 without loss

of generality):
—If the circles CP2 and CP3 lying on the y-z plane intersect, let V and W be the

intersections. Set u(E) = max{‖E − V ‖, ‖E − W‖}. Check if the monotonicity require-
ment u(E) ≥ u(P2), u(P3) is satisfied. If yes, go to step 3, otherwise, treat as if CP2 and
CP3 do not intersect.

—If CP2 and CP3 do not intersect: discard from NBD the P with u(P) =
max{u(P1), u(P2)}.

• If there is only one Pl remaining, simply set u(E) = u(Pl) + h.
3. Go to step 2.

Note that in the updating procedure, we never update the boundary of �d , which is initially
set to ∞. This is due to the fact that the characteristics flow only toward the boundaries;
therefore, the upwinding stencils never contain the grid points on the boundaries.

4.2. Relation to “Reversing” Huygens’s Principle and the Computation of Envelopes

In the above algorithms, we determine the location of one Voronoi generator in � by
finding the intersections of two circles in 2D and three spheres in 3D. In the 2D case, we
are asking basically “where is the point whose distances to the stencils P1 and P2 are as
prescribed by u(P1) and u(P2)?” If we consider the points in a neighborhood of E in the
continuous case, we know that E∗ has to be the intersection of all the corresponding circles
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centered at the neighboring points. More precisely, one can consider � as the envelope
of the circles centered at each point in space with the radius prescribed by the distance
function evaluated at that point. This can be viewed as sending circular waves from each
point in the neighborhood of E at times prescribed by the distance function and asking for
the envelope of the waves at a certain time. It is as if we are running Huygens’s principle
“backwards.” This concept can certainly be extended to general � such as curves and
surfaces.

4.3. A Hybrid Algorithm

As noted above, solving the Godunov Hamiltonian will give the exact distance to hyper-
planes in their Voronoi regions. On the other hand, our methods give the exact distance for
some simple point configurations and at least first-order approximation in certain circum-
stances (please see the section about the error analysis). We would like to create a method
that makes use of the advantages of both approaches.

The idea is to adopt a consistency check of the solution obtained from the spherical
method. At grid points where the result of the check implies an inconsistency of the distance
information, we return to solving Godunov’s Hamiltonian (2). Here, the inconsistency of the
distance information means either an ambiguity (defined below) or the disagreement in the
intersection computed from using another set of neighboring grid points as stencil. Figure 3
delineates what disagreement means: let S be the

√
2-neighbor with u(S) = min{u(T ):

T is a
√

2 neighbor of E}, and P and Q be the stencils selected from the regular neighbors
of E by the spherical solver. If the three circles CS , CP , and CQ do not intersect, we switch
to the Godunov method.

DEFINITION 4.2. We say we have ambiguity when any of the following cases happen:

1. C1 and C2 do not intersect.
2. u(E) = max{|E − W |, |E − V |} < min{u(P), u(Q)}.
3. u(E) = u(P) = u(Q).

ALGORITHM 2 (A 2D Hybrid Solver).

1. Initialize: Set ui j ≡ ∞ for (i, j) �∈ �. For each γ ∈ �, set u(γ ) = 0. For z ∈ � not in
�d , compute the exact solution at the vertices of the grid cell in which z lies.

FIG. 3. A consistency check for plane wave.
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2. For each sweep direction in {(x+, y+), (y−, x−), (x+, y−), (x−, y+)}, iterate
through each grid point according each of the sweep directions or according to the fast
marching heap sort.

3. At each grid E with index (i, j)
• if all the neighbors are infinity, skip
• if there is at least one noninfinity neighbor in both the x- and y-directions, let P and

Q be the smallest one in each direction.
Without loss of generality, assume u(P) > u(Q). Discard P if u(P) − u(Q) > ‖P − Q‖.

• if there is only one finite neighbor z̄, set u(E) = u(z̄) + h.
• if both P and Q remain, find the points of intersection of circles CP and CQ .

—If ambiguous, solve Eq. (5) for u(E) instead.
—If not ambiguous, find the smallest neighbor S from the

√
2h neighbors {i ± 1, j ±

1}, and find the points of intersection of the circle CS and CP or CQ . If there are no common
points of intersection, solve Eq. (5) for u(E) instead.

—Otherwise, set u(E) = max{‖E − W‖, ‖E − V ‖}, where W and V are the inter-
sects.

We emphasize here that if the normals of the line segments in � do not have slopes which
are integer multiples of π/4, we need to adopt the

√
2-neighbors of a given grid point as the

regular stencils. Otherwise, the sweeping method would simply fail because during each
iteration, we cannot compute and propagate the exact distance away from �. However, this
problem may be resolved if we adopt a “generalization” of the closest point formulation
(which is a current research direction and will be mentioned at the end of this paper).

4.4. The Closest Point Formulation

We see that the above algorithm tries to determine the closest point E∗ of each grid point
E . So if we store the generator of each grid point and propagate this closest point information
somewhat “along” the characteristics, the computation of the intersections of spheres at each
grid point becomes unnecessary. All we have to do is to maintain the monotonicity of the
solution. This formulation is motivated by the work of Mauch [11] and the dynamic surface
extension method of Steinhoff and co-workers [19, 21].

DEFINITION 4.3. Given �, a closest point function for � is V : R
3 → R

3 such that

V (E) = E∗

for E∗ predetermined as described in Definition 1.

We thus arrive at the following algorithm:
Let u be the distance function on the grids, and V be the corresponding closest point

function.

ALGORITHM 3 (The Closest Point Solver).

1. Initialize: give the exact distance to u and the exact closest points to V at grid points
near �. Mark them so they will not be updated. Mark all other grid values as ∞.

2. Iterate through each grid point E with index (i, j, k) in each sweeping direction or
according to the fast marching heap sort.

3. For each neighbor Pl of E , compute utmp
l = ‖E − P∗

l ‖2.
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4. If ‖E − P∗
l ‖2 < minl u(Pl), set utmp

l = ∞. This is to enforce the monotonicity of the
solution.

5. Set u(E) = minl utmp
l = utmp

λ and V (E) = P∗
λ .

4.5. A Generalized Closest Point Formulation

In the spirit of Steinhoff’s dynamic surface extension, we can define functions that map
each point in R

3 to the space of representations of surfaces. Given a proper initialization of
this “generalized” closest function, we can then compute the values of the function on the
whole computational domain using the “sweeping” approach mentioned above.

In computational geometry and related fields such as computer graphics and computer
vision, surfaces are often triangulated and stored as a set of triangles in 3D. This motivates
our next generalization of the closest point algorithm.

Given a triangle T (or line segment S) in R
3 and a point P , the following algorithm

explores the fact that we can easily compute the exact distance from P to T (or S) using
elementary Euclidean geometry.

DEFINITION 4.4 (Piecewise Linear Surface Element). We define a piecewise linear sur-
face element S to be a set of three ordered points in R

3, and interpret the three points as the
three vertices of a triangle. In a case in which two of the three points are identical, we say
that S is a line segment. In the degenerate case where the three points are identical, we say
that S is a point in R

3.
We can further define the distance function of a point P and a surface element S as the

minimum distance between P and the points on the triangle represented by S,

dist(P,S) := min
y∈T

(P, y),

where T is the triangle defined byS. Notice that this definition is valid even for the degenerate
cases when S is a line segment or a point.

DEFINITION 4.5 (Generalized Closest Point Function). We say W is a generalized clos-
est point function if

W : R
3 → {the space of piecewise linear surface elements}.

Let � be represented by a set of piecewise linear surface elements in R
3. Let u be

the distance function on the grids, and W be the corresponding generalized closest point
function.

ALGORITHM 4 (The Generalized Closest Point Solver).

1. Initialize: give the exact distance to u and the exact surface elements to W at grid
points near �. Mark them so they will not be updated. Mark all other grid values as ∞.

2. Iterate through each grid point E with index (i, j, k) in each sweeping direction or
according to the fast marching heap sort.

3. For each neighbor Pl of E , compute utmp
l = dist(E, W (Pl)).

4. If dist(E, W (Pl)) < minl u(Pl), set utmp
l = ∞. This is to enforce the monotonicity of

the solution.
5. Set u(E) = minl utmp

l = utmp
λ and W (E) = W (Pλ).

We show the results at the end of this paper. See Figs. 11 and 12.
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4.6. Analysis of the Algorithms

Our experience shows that a satisfactory approximation can be reached after one set of
sweeping iterations. We have not yet been able to prove convergence. However, we do see
the limits to grid-based computation of distance functions.

Both the spherical intersection method and the closest point approach described above
are in essence trying to determine the closest point of E using the closest points of the
neighbors of E . In order to get the exact solution (u(E) or E∗), we need the following
property:

E∗ ∈ {P∗
i : Pi the neighbors of E}.

However, this is not always possible. In fact, near the Voronoi boundary, we might reach
the limits of our methods using the standard 4-point stencil. See Fig. 4.

Consider the following situation: Suppose E∗ falls into the first quadrant (I). Let P be the
grid such that dist(P, E∗) < dist(E, E∗). We form a circle CE centered at E , passing through
E∗, and CP centered at P , also passing through E∗. Let DE , DP be the corresponding disks.
Then if ϒ = � ∩ {DP\DE } �= ∅, then P∗ has to be in it, because any point in ϒ satisfies

FIG. 4. An example of the limit of grid-based distance approximation.
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the property that it is closer to P than is E∗. Similarly, we can construct the same scenario
for Q.

As illustrated in Fig. 4, E is the only point in the neighborhood that is in the Voronoi
region generated by E∗; i.e., E∗ �∈ {P∗, Q∗, (P ′)∗, (Q′)∗}. Hence, our updating procedure
will not compute the exact distance at E in this case.

4.6.1. Local Error Analysis

Let rE := ‖E − E∗‖ and r̃E := ‖E − P∗‖. We want to know what the maximum error
e := r̃E − rE can be, given exact values of u and V at the neighbors of E . From the
illustration above, we can easily see that max r̃E < max ‖E∗ − P‖ + h, and

max ‖E∗ − P‖ <

√
r2

E + h2 = rE + h2 1

2rE
+ O(h4).

Thus, 0 ≤ r̃E − rE < h. So the local error is O(h).

4.6.2. The Selection of Stencils

In the algorithms described above, we have some criteria which eliminate invalid stencils.
In the case where the value on a grid point is still infinity, we know automatically that it
cannot lie in a valid stencil. In the case where the grid point carries “obviously incorrect”
distance information, we may make use of the observation of the constant travel time of the
eikonal equations: if the two neighboring grid points carry finite values and the difference
of the values of the distance function on them is too large, we have an incompatibility. Since
we want to enforce the upwinding stencil selection, we favor the grid point with the smaller
value. Therefore, we have the following propositions:

PROPOSITION 4.1. Let P1 and P2 be two neighbors of E , and u(P2) − u(P1) > ‖P2 −
P1‖. Then P∗

1 �= P∗
2 .

Proof. Assume on the contrary that P∗
1 = P∗

2 = P∗ and u(P2) > u(P1). Let Q be a
point on P∗ P2 such that ‖Q − P∗‖ = u(P1). Let R be a point on P1 P2 such that � P2QR
is a right triangle with hypotenuse R P2.

Then ‖P2 − P1‖ = |P1 P2| ≥ |R P2 ≥ |Q P2| = u(P2) − u(P1). Thus, we have a contradic-
tion. The proof is complete. �

This proposition shows that if P∗
1 is correct and u(P2) − u(P1) > ‖P2 − P1‖, then the

information we hold on P2 is not correct.

5. RESULTS

We first run our algorithms to approximate the distance function of a single Voronoi
generator at the center of a 11 × 11 × 11 grid. As shown in Table I, the spherical method
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TABLE I

A Comparison of Test Case Results

11 × 11 × 11 (h = 0.1) max error L1 error

Godunov method 0.114 0.091
Spherical method 1.53e-15 2.99e-16
Closest point method 0 0

gives an almost exact result with error close to machine zero. The closest point method
gives the exact solution. Since we need to take a square root repeatedly in the first case,
we expect to lose some accuracy. However, as demonstrated by the numerical results, the
whole process of the spherical method appears to be stable.

We then tested our generalized closest point solver in both 2D and 3D with several
different configurations. In the test case, our generalized closest point algorithm is exact to
machine precision. We will describe our test cases in more detail in a following section.

In the following sections, we will “visualize” the distance functions by their level sets.
In 2D, we plot the contour lines, and in 3D, we plot the isosurfaces.

5.1. A Comparison of Results in 2D

The following two sets of figures, Figs. 5 and 6, are computed in the sweeping fashion.
We can clearly see that the hybrid algorithm gives straight contour lines in the Voronoi
regions generated by straight line segments. In other regions, the contour lines have a nice
circular shape.

5.2. A Comparison of Results

We run the Godunov method and our methods to approximate the distance function to
a set of 10 randomly selected isolated points. From Tables III and IV, we can see that the

FIG. 5. A comparison of results by Godunov method and spherical intersection method in 2D.
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TABLE II

Godunov Method

Grid max error Convergence rate L1 error Convergence rate

10 × 10 × 10 (h = 0.01) 0.008555 5.223e-6
20 × 20 × 20 0.005723 0.58 3.343e-6 0.64
40 × 40 × 40 0.003656 0.65 2.059e-6 0.70
80 × 80 × 80 0.002311 0.66 1.248e-6 0.72

TABLE III

Spherical Method

Grid max error Convergence rate L1 error Convergence rate

10 × 10 × 10 (h = 0.01) 0.006869 1.500e-6
20 × 20 × 20 0.002855 1.3 0.201e-6 2.9
40 × 40 × 40 0.001355 1.1 0.041e-6 2.3
80 × 80 × 80 0.000674 1.0 0.011e-6 1.9

TABLE IV

Closest Point Method

Grid max error Convergence rate L1 error Convergence rate

10 × 10 × 10 (h = 0.01) 0 0
20 × 20 × 20 0 ∞ 0 ∞
40 × 40 × 40 0 ∞ 0 ∞
80 × 80 × 80 0 ∞ 0 ∞

FIG. 6. A comparison of results by Godunov method and spherical intersection method in 2D.



COMPUTATION OF THE DISTANCE FUNCTION 189

FIG. 7. Isosurfaces computed by the Godunov solver.

spherical method converges numerically with a second-order rate while the closest point
solver gives the exact distance function. We see that both methods converge faster than
the Godunov method (Table III). There is a loss of accuracy in the solution obtained by
using the spherical method. The error comes from two major sources. Within each Voronoi
region, the computed solution loses accuracy from solving the quadratic equations. Near
the Voronoi boundaries, it is not always true that the grid value we are updating has to
be greater than or equal to the values of the stencils. By enforcing monotonicity of our
solution near the Voronoi boundaries, we may therefore create a slight perturbation to the
true solution. This perturbation propagates outwards from the Voronoi boundaries during
later updating iterations. In the closest point algorithm for isolated points, we enforce a
slightly relaxed monotonicity (steps 4 and 5) on solution. Unless the situation mentioned
in previous analysis occurs, we will obtain the exact distance function.

In Figs. 7–10 we show the comparison of the isourfaces computed from the solutions
of the Godunov solver and our methods. We have a 50 × 50 × 50 grid with uniform grid
size h = 0.01 and 20 randomly selected isolated points. We can clearly see that the spher-
ical intersection method gives much better results in terms of both L1 error and “visual”
examination of the isosurfaces.

5.3. Results of the Generalized Closest Point Sweeping

Figure 11 shows the contour lines of the computed distance function to a set of a closed
polygon, two line segments, and two isolated points. Table V shows, in turn, that the
generalized closest point algorithm computes the distance to this set of objects to the
machine precision after one sweeping iteration. Figure 12 shows the isosurfaces rendered
from the computed distance function to a set of two polyhedra, three line segments, and
two isolated points.
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FIG. 8. Isosurfaces computed by the spherical intersection method.

FIG. 9. Isosurfaces computed by the Godunov solver.
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TABLE V

The Generalized Closest Point Method

Grid max error Convergence rate L1 error Convergence rate

50 × 50 (h = 0.02) 0 0
100 × 100 0 ∞ 0 ∞
200 × 200 0 ∞ 0 ∞

FIG. 10. Isosurfaces computed by the spherical intersection method.

FIG. 11. Contour lines for the distance to a set of piecewise linear objects.
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FIG. 12. Isosurfaces of the distance to triangulated surfaces and isolated points.

6. CONCLUSION

In this paper, we have introduced two grid based algorithms for computing the distance
function to a given configuration of isolated points, which are then generalized to compute
the distance function to piecewise linear objects. They prove to be accurate, fast (O(N )),
and easy to implement. The key to the algorithms is the combination of “sweeping,” the
upwinding-based stencil selection, and smarter geometric interpretation. Putting them all to-
gether leads to accurate and viscosity-solution-compliant approximations. The generalized
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closest point solver provides a quick translator of the triangulated data commonly used
in computational geometry to the level set formulation. It also suggests a more general
framework for the distance computation to more general surfaces.

7. FUTURE WORK

Our first remark is that our algorithms (both spherical intersection and (generalized)
closest point sweeping) can easily be generalized to other grid geometries since we are
not approximating partial derivatives on the stencil. This topic will be investigated by the
author.

Furthermore, from the adaptation of the closest point formulation, we have recognized
the potential of computing the distance function to more general geometrical objects. We
are currently seeking a generalized closest point formulation for computing more general
surfaces in 3D. As indicated in the previous section, instead of storing only the closest point,
we can also store a representation of the surface element;

V (E) → (E∗, surface element).

The “surface element” can be for example the curvature or a NURB description of the
surface. The challenge is to compute the exact distance to a given surface element and
to derive the “upwinding” criteria for propagating the surface information throughout the
grids. A preliminary result of one method using a combination of Newton’s method and
sweeping iterations on a smooth parametrized curve segment is shown in Fig. 13.

FIG. 13. The level contours of the distance function to a smooth parametrized curve constructed using
Newton’s method and sweeping.
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